Research on Miniaturized UHF Sensing Technology for PD Detection in Power Equipment Based on Symmetric Cut Theory

Author:

Xu Bowen1ORCID,Duan Chaoqian1,Wang Jiangfan1,Zhang Lei2,Zhang Guozhi1,Zhang Guoguang13,Li Guangke3

Affiliation:

1. Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China

2. Electric Power Research Institute, Guangxi Power Grid Co., Ltd., Nanning 530023, China

3. Handan Puxin Electric Power Technology Co., Ltd., Handan 057150, China

Abstract

In answer to the demand for high sensitivity and miniaturization of ultra-high frequency (UHF) sensors for partial discharge (PD) detection in power equipment, this paper proposes research on miniaturized UHF-sensing technology for PD detection in power equipment based on symmetric cut theory. The symmetric cut theory is applied for the first time to the miniaturization of PD UHF sensors for power equipment. A planar monopole UHF sensor with a size of only 70 mm × 70 mm × 1.6 mm is developed using an exponential asymptotic feed line approach, which is a 50% size reduction. The frequency–response characteristics of the sensor are simulated, optimized and tested; the results show that the standing wave ratio of the sensor developed in this paper is less than 2 in the frequency band from 427 MHz to 1.54 GHz, and less than 5 in the frequency band from 300 MHz to 1.95 GHz; in the 300 MHz~1.5 GHz band; the maximum and average gains of the sensor E-plane are 4.76 dB and 1.02 dB, respectively. Finally, the PD simulation experiment platform for power equipment is built to test the sensor’s sensing performance; the results show that the sensor can effectively detect the PD signals; the sensing sensitivity is improved by about 95% relative to an elliptical monopole UHF sensor.

Funder

Natural Science Foundation of the Hubei Province of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3