Management of Enteric Methane Emissions in Ruminants Using Feed Additives: A Review

Author:

Palangi ValiollahORCID,Lackner MaximilianORCID

Abstract

In ruminants’ metabolism, a surplus of hydrogen is removed from the reduction reaction of NAD+ (nicotinamide adenine dinucleotide) by the formation of methane by methanogenic bacteria and archaea methanogens. The balance of calculations between VFA (volatile fatty acids), CO2, and CH4 indicates that acetate and butyrate play a role in methane production, while the formation of propionate maintains hydrogen and therefore reduces methane production. CH4 formation in ruminant livestock is not desired because it reduces feed efficiency and contributes to global warming. Therefore, numerous strategies have been investigated to mitigate methane production in ruminants. This review focuses on feed additives which have the capability of reducing methane emissions in ruminants. Due to the environmental importance of methane emissions, such studies are needed to make milk and meat production more sustainable. Additionally, the additives which have no adverse effects on rumen microbial population and where the reduction effects are a result of their hydrogen sink property, are the best reduction methods. Methane inhibitors have shown such a property in most cases. More work is needed to bring methane-reducing agents in ruminant diets to full market maturity, so that farmers can reap feed cost savings and simultaneously achieve environmental benefits.

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Reference119 articles.

1. Methanogens: Methane producers of the rumen and mitigation strategies;Hook;Archaea,2010

2. Co-abundance analysis reveals hidden players associated with high methane yield phenotype in sheep rumen microbiome;Palizban;Sci. Rep.,2020

3. The global methane budget 2000–2017;Saunois;Earth Sys. Sci. Data,2020

4. (2022, May 06). EPA, Overview of Greenhouse Gasses, Available online: https://www.epa.gov/ghgemissions/overview-greenhouse-gases,.

5. Lackner, M., Sajjadi, B., and Chen, W. (2022). Handbook of Climate Change Mitigation and Adaptation, Springer.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3