Rubbing Salt in the Wound: Molecular Evolutionary Analysis of Pain-Related Genes Reveals the Pain Adaptation of Cetaceans in Seawater

Author:

Ding Xiaoyue,Yu Fangfang,He Xiaofang,Xu Shixia,Yang GuangORCID,Ren WenhuaORCID

Abstract

Pain, usually caused by a strong or disruptive stimulus, is an unpleasant sensation that serves as a warning to organisms. To adapt to extreme environments, some terrestrial animals have evolved to be inherently insensitive to pain. Cetaceans are known as supposedly indifferent to pain from soft tissue injury representatives of marine mammals. However, the molecular mechanisms that explain how cetaceans are adapted to pain in response to seawater environment remain unclear. Here, we performed a molecular evolutionary analysis of pain-related genes in selected representatives of cetaceans. ASIC4 gene was identified to be pseudogenized in all odontocetes (toothed whales) except from Physeter macrocephalus (sperm whales), and relaxed selection of this gene was detected in toothed whales with pseudogenized ASIC4. In addition, positive selection was detected in pain perception (i.e., ASIC3, ANO1, CCK, and SCN9A) and analgesia (i.e., ASIC3, ANO1, CCK, and SCN9A) genes among the examined cetaceans. In this study, potential convergent amino acid substitutions within predicted proteins were found among the examined cetaceans and other terrestrial mammals, inhabiting extreme environments (e.g., V441I of TRPV1 in cetaceans and naked mole rats). Moreover, specific amino acid substitutions within predicted sequences of several proteins were found in the studied representatives of cetaceans (e.g., F56L and D163A of ASIC3, E88G of GRK2, and F159L of OPRD1). Most of the substitutions were located within important functional domains of proteins, affecting their protein functions. The above evidence suggests that cetaceans might have undergone adaptive molecular evolution in pain-related genes through different evolutionary patterns to adapt to pain, resulting in greater sensitivity to pain and more effective analgesia. This study could have implications for diagnosis and treatment of human pain.

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

National Key Programme of Research and Development, Ministry of Science and Technology of China

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3