Abstract
The transient receptor potential plays a critical role in the sensory nervous systems of vertebrates in response to various mechanisms and stimuli, such as environmental temperature. We studied the physiological adaptive evolution of the TRP gene in the saurian family and performed a comprehensive analysis to identify the evolution of the thermo-TRPs channels. All 251 putative TRPs were divided into 6 subfamilies, except TRPN, from the 8 saurian genomes. Multiple characteristics of these genes were analyzed. The results showed that the most conserved proteins of TRP box 1 were located in motif 1, and those of TRP box 2 were located in motif 10. The TRPA and TRPV in saurian tend to be one cluster, as a sister cluster with TRPC, and the TRPM is the root of group I. The TRPM, TRPV, and TRPP were clustered into two clades, and TRPP were organized into TRP PKD1-like and PKD2-like. Segmental duplications mainly occurred in the TRPM subfamily, and tandem duplications only occurred in the TRPV subfamily. There were 15 sites to be under positive selection for TRPA1 and TRPV2 genes. In summary, gene structure, chromosomal location, gene duplication, synteny analysis, and selective pressure at the molecular level provided some new evidence for genetic adaptation to the environment. This result provides a basis for identifying and classifying TRP genes and contributes to further elucidating their potential function in thermal sensors.
Funder
National Natural Science Foundation of China
Funds for Distinguished Young Scholars of Hubei University of Chinese Medicine
Research Start-up Fund of Hubei University of Chinese Medicine
State Key Laboratory of Microbial Technology Open Projects Fund
“14th Five-Year” Excellent Discipline Team of Hubei University of Chinese Medicine
the National Famous Old Chinese Medicine Experts Liu Hegang Inheritance Studio Project
Subject
General Veterinary,Animal Science and Zoology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献