Tablets Made from Paper—An Industrially Feasible Approach

Author:

Abdelkader Ayat,Moos ChristophORCID,Pelloux Adrien,Pfeiffer Marcus,Alter ChristianORCID,Kolling StefanORCID,Keck Cornelia M.ORCID

Abstract

Many orally administrated drugs exhibit poor bioavailability due to their limited solubility. The smartFilm technology is an innovative approach to improve the drug aqueous solubility, where the drug is embedded within the matrix of cellulose-based paper in an amorphous state, hence increasing its solubility. Despite its proven effectiveness, smartFilms, i.e., pieces of paper, exhibit limited flowability and are not easy to swallow, and thus oral administration is not convenient. In addition, there is a lack of knowledge of their mechanical behavior under compression. This study aimed to transform unloaded smartFilms, i.e., paper, into a flowable physical form and investigated its mechanical behavior when compressed. Granules made of paper were prepared via wet granulation and were compressed into tablets. The influence of using different amounts and forms of sucrose, as a binder, on the pharmaceutical properties of the produced granules and tablets was studied and the most suitable composition was identified by using instrumented die experiments. For this, the Poisson’s ratio and Young’s modulus were determined for different compaction force levels and the deformation behavior was estimated with the Heckel mathematical model. All granule batches showed good flowability with angle of repose values between 25–35°. Granule batches with ≤30% dry sucrose content produced tablets that fulfilled the European Pharmacopeia requirements, and the compaction behavior of the granules was found to be comparable to the behavior of classical binders and compression enhancers. Paper can be transferred into granules. These granules can be used as suitable intermediate products for the production of tablets made of paper in large, industrial scale.

Funder

Forschungscampus Mittelhessen

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Reference36 articles.

1. Challenges and Recent Progress in Oral Drug Delivery Systems for Biopharmaceuticals

2. SmartFilms-Oral and Peroral Films for Optimized Delivery of Nanoparticulate or Amorphous Drugs;Lemke,2016

3. Cellulosefaserbasierte Trägermatrices (smartfilms) Zur Applikation Von Inhaltsstoffen Sowie Deren Herstellung;Lemke;German Patent,2017

4. Tablets made from paper;Stumpf;Int. J. Pharm.,2018

5. FORMULATION AND DEVELOPMENT OF EFAVIRENZ TABLETS BY PAPER TECHNIQUE USING CO-SOLVENCY METHOD

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3