Design and Synthesis of Aminopyrimidinyl Pyrazole Analogs as PLK1 Inhibitors Using Hybrid 3D-QSAR and Molecular Docking

Author:

Bhujbal Swapnil P.,Kim Hyejin,Bae Hyunah,Hah Jung-Mi

Abstract

Cancer continues to be one of the world’s most severe public health issues. Polo-like kinase 1 (PLK1) is one of the most studied members of the polo-like kinase subfamily of serine/threonine protein kinases. PLK1 is a key mitotic regulator responsible for cell cycle processes, such as mitosis initiation, bipolar mitotic spindle formation, centrosome maturation, the metaphase to anaphase transition, and mitotic exit, whose overexpression is often associated with oncogenesis. Moreover, it is also involved in DNA damage response, autophagy, cytokine signaling, and apoptosis. Due to its fundamental role in cell cycle regulation, PLK1 has been linked to various types of cancer onset and progression, such as lung, colon, prostate, ovary, breast cancer, melanoma, and AML. Hence, PLK1 is recognized as a critical therapeutic target in the treatment of various proliferative diseases. PLK1 inhibitors developed in recent years have been researched and studied through clinical trials; however, most of them have failed because of their toxicity and poor therapeutic response. To design more potent and selective PLK1 inhibitors, we performed a receptor-based hybrid 3D-QSAR study of two datasets, possessing similar common scaffolds. The developed hybrid CoMFA (q2 = 0.628, r2 = 0.905) and CoMSIA (q2 = 0.580, r2 = 0.895) models showed admissible statistical results. Comprehensive, molecular docking of one of the most active compounds from the dataset and hybrid 3D-QSAR studies revealed important active site residues of PLK1 and requisite structural characteristics of ligand to design potent PLK1 inhibitors. Based on this information, we have proposed approximately 38 PLK1 inhibitors. The newly designed PLK1 inhibitors showed higher activity (predicted pIC50) than the most active compounds of all the derivatives selected for this study. We selected and synthesized two compounds, which were ultimately found to possess good IC50 values. Our design strategy provides insight into development of potent and selective PLK1 inhibitors.

Funder

National Research Foundation of Korea

Hanyang University

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3