Abstract
Heavy atoms present challenges to atomic theory calculations due to the large number of electrons and their complicated interactions. Conventional approaches such as calculations based on Cowan’s code are limited and require a large number of parameters for energy agreement. One promising approach is relativistic configuration-interaction and many-body perturbation theory (CI-MBPT) methods. We present CI-MBPT results for various atomic systems where this approach can lead to reasonable agreement: La I, La II, Th I, Th II, U I, Pu II. Among atomic properties, energies, g-factors, electric dipole moments, lifetimes, hyperfine structure constants, and isotopic shifts are discussed. While in La I and La II accuracy for transitions is better than that obtained with other methods, more work is needed for actinides.
Funder
United States Department of Energy
United States Department of Energy, through LDRD
Subject
Condensed Matter Physics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献