Ga-Doped ZnO Nanostructured Powder for Cool-Nanopigment in Environment Applications

Author:

Farha Ashraf H.ORCID,Ibrahim Mervat M.,Mansour Shehab A.ORCID

Abstract

Gallium (Ga) doped zinc oxide (ZnO) nanocrystals were successfully synthesized via a γ-radiation-assisted polymer-pyrolysis route. Ga doped ZnO samples with Ga and ZnO precursor salts with molar ratios of 0%, 3%, 5%, and 10% were produced. A γ-radiation dosage of 1.5 kGy was used for polymerization initiation during the sample preparation. The properties of the obtained nanocrystal samples were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR), UV-visible absorption, NIR-VIS-UV diffused reflectance, and high-resolution transmission electron microscopy (HR-TEM) characterization techniques. XRD results revealed the formation of ZnO nanocrystals with wurtzite structure for both Ga-doped and undoped ZnO samples. Noticeable increasing in the line broadening of the XRD peaks as well as pronounced decreasing of crystallite size were observed with the increasing Ga ratio in the samples. Optical peaks around Ga:ZnO samples showed a blueshift in the optical absorption peaks with increasing Ga content. These results are in good agreement with the dependency of crystallites size as well as grain size on Ga ratio obtained from XRD and TEM images, which make them fit well for the powder cool-pigment applications. The doped samples showed high values of NIR reflectance (RNIR*) with percentage varied from 84.25% to 89.05% that enabled them to qualify for cool-nanopigment applications. Furthermore, such doped samples registered low values of visible reflectance (RVIS*) that enabled to reduce the glare from the reflected visible sunlight.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3