Experimental Data on Maximum Rainfall Retention on Crowns of Deciduous Tree Species of the Middle Ural (Russia)

Author:

Klimenko DmitryORCID,Ostakhova Anna,Tuneva Alina

Abstract

Metering of actual volume of rainfall flowing under deciduous stock canopy is essential for correct calculation of the water balance of forest watersheds of small rivers. This article includes the results of a physical (experimental) simulation of maximum rainfall retention on the laminae of deciduous tree species. The authors developed the experimental methodology, assembled the testing machine, assessed results, and suggested ways of interpreting the obtained results in calculations of flood runoff. According to experimental data, rainfall is retained on laminae both in film and drip form. Specific retention value per unit area of leaf surface is mostly determined by the level of physical roughness of a leaf, which, in turn, depends on the type of venation, typical for different types of analyzed trees. The value of complete raindrops retention by crowns of deciduous species is determined by the leaf surface area and rainfall intensity. Dependencies of the maximum mass of the retained moisture on the leaf surface area, which are characterized by the correlation coefficient of 0.98, were obtained on the basis of branch sprinkling experiments. The maximum mass of water retention on crowns of single deciduous trees can reach up to 77 kg, or 3.0–4.0 mm per projection area of a crown. This is significantly less than the maximum mass of water retention on crowns of coniferous species (for comparison, larch retains up to 150 kg of rain moisture or 5.9 mm of layer). Evaporation from crowns, as well as wind oscillations of laminae, result in larger volumes of interception as compared to the results obtained from experiments. Metering of irrecoverable losses values has great practical value in the assessment of the water balance of forest lands, moisture balance in soil layer under the forest canopy, as well as the flood runoff of small watersheds of forest zones.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3