Methodologies in Spectral Tuning of DSSC Chromophores through Rational Design and Chemical-Structure Engineering

Author:

Arooj Qudsia,Wilson Gregory J.ORCID,Wang Feng

Abstract

The investigation of new photosensitizers for Grätzel-type organic dye-sensitized solar cells (DSSCs) remains a topic of interest for researchers of alternative solar cell materials. Over the past 20 years, considerable and increasing research efforts have been devoted to the design and synthesis of new materials, based on “donor, π-conjugated bridge, acceptor” (D–π–A) organic dye photosensitizers. In this paper, the computational chemistry methods are outlined and the design of organic sensitizers (compounds, dyes) is discussed. With reference to recent literature reports, rational molecular design is demonstrated as an effective process to study structure–property relationships. Examples from established organic dye sensitizer structures, such as TA-St-CA, Carbz-PAHTDDT (S9), and metalloporphyrin (PZn-EDOT), are used as reference structures for an examination of this concept applied to generate systematically modified structural derivatives and hence new photosensitizers (i.e., dyes). Using computer-aided rational design (CARD), the in silico design of new chromophores targeted an improvement in spectral properties via the tuning of electronic structures by substitution of molecular fragments, as evaluated by the calculation of absorption profiles. This mini review provides important rational design strategies for engineering new organic light-absorbing compounds towards improved spectral absorption and related optoelectronic properties of chromophores for photovoltaic applications, including the dye-sensitized solar cell (DSSC).

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3