Abstract
Sucrose is one of the most abundantly available renewable chemicals in the world, and it is expected to be utilized as a raw material for wood-based material products. Herein, a novel adhesion system that was based on sucrose and ammonium dihydrogen phosphate (ADP) was synthesized into an adhesive with 80% solid content, and this eco-friendly was utilized on the fabrication of plywood. The effects of the synthesis conditions on the plywood bond performance and synthesis mechanism were investigated. The optimal synthesis conditions were as follows: the mass proportion between sucrose and ADP was 90/10, the synthesis temperature was 90 °C, and the synthesis time was 3 h. The bonding performance of the plywood that was bonded by optimal SADP adhesive satisfied the GB/T 9846-2015 standard. The chemical analysis was performance tested by using High-Performance Liquid Chromatography (HPLC), Attenuated Total Reflection-Fourier Transform Infrared Spectra (ATR-FTIR), and Pyrolysis Gas Chromatography and Mass Spectrometry (Py-GC/MS) to understand the chemical transformation during the synthesis process. The chemical analysis results confirmed that the hydrolysis and conversation reaction of sucrose occurred in the synthesized SADP adhesive, and ADP promoted the pyrolysis efficiency of sucrose.
Subject
General Materials Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献