Abstract
Wood veneer defect detection plays a vital role in the wood veneer production industry. Studies on wood veneer defect detection usually focused on detection accuracy for industrial applications but ignored algorithm execution speed; thus, their methods do not meet the required speed of online detection. In this paper, a new detection method is proposed that achieves high accuracy and a suitable speed for online production. Firstly, 2838 wood veneer images were collected using data collection equipment developed in the laboratory and labeled by experienced workers from a wood company. Then, an integrated model, glance multiple channel mask region convolution neural network (R-CNN), was constructed to detect wood veneer defects, which included a glance network and a multiple channel mask R-CNN. Neural network architect search technology was used to automatically construct the glance network with the lowest number of floating-point operations to pick out potential defect images out of numerous original wood veneer images. A genetic algorithm was used to merge the intermediate features extracted by the glance network. Multi-Channel Mask R-CNN was then used to classify and locate the defects. The experimental results show that the proposed method achieves a 98.70% overall classification accuracy and a 95.31% mean average precision, and only 2.5 s was needed to detect a batch of 50 standard images and 50 defective images. Compared with other wood veneer defect detection methods, the proposed method is more accurate and faster.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
77 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献