Glacier Surface Motion Estimation from SAR Intensity Images Based on Subpixel Gradient Correlation

Author:

Fang LiORCID,Ye ZhenORCID,Su Shu,Kang JianORCID,Tong Xiaohua

Abstract

With the current extensive availability of synthetic-aperture radar (SAR) datasets with high temporal (e.g., a repeat cycle of a few or a dozen days) and spatial resolution (e.g., in the order of ∼1 m), radar remote sensing possesses an increasing potential for the monitoring of glacier surface motion thanks to the nearly weather and time-independent advantages. This paper proposes a robust subpixel frequency-based image correlation method for dense matching and integrates the improved matching into a workflow of glacier surface motion estimation using SAR intensity images with specific pre-processing and post-processing steps. The proposed matching method combines complex edge maps and local upsampling in the frequency domain for subpixel intensity tracking, which ensure the accuracy and robustness of glacier surface motion estimation. Experiments were carried out with TerraSAR-X and Sentinel-1 images covering two glacier areas in pole and alpine regions. The results of the monitoring and investigation of glacier motion validate the feasibility and reliability of the presented motion estimation method based on subpixel gradient correlation. The comparative results using both simulated and real SAR data indicate that the proposed matching method outperforms commonly used correlation-based matching methods in terms of matching accuracy and the ability to obtain correct matches.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3