Influence of Polypropylene Fibre Factor on Flowability and Mechanical Properties of Self-Compacting Geopolymer

Author:

Pu Bei-chen,Liu Bin,Li LiORCID,Pang Wei,Wan Zhangrun

Abstract

The possibility of using geopolymer instead of Portland cement could effectively reduce carbon dioxide emissions from cement manufacturing. Fibre-reinforced self-compacting geopolymers have great potential in civil engineering applications, such as chord member grouting for concrete-filled steel tubular truss beams. However, to the best of the authors’ knowledge, the quantitative relationship between FF and the properties of the fibre-reinforced geopolymer has been rarely reported. In this research, 26 groups of mixtures were used to study the influence of the polypropylene fibre factor (FF) on the flowability and mechanical properties and also the compactness of the fibre-reinforced self-compacting geopolymer. At the same volume fraction, geopolymers with long fibres present worse flowability than those having short fibres due to the easier contacting of long fibres. By growing the FF the influence of fibre addition on the V-funnel flow rate is more significant than the slump spread. This can be ascribed to the consequence of fibre addition and friction by the V-funnel which estimates the restrained deformability. For FF lesser than critical factor Fc = 100, influence of fibres is negligible and fibres are far apart from each other and, thus, they cannot restrict cracking under load and transfer the load to improve the mechanical properties. For FF between the Fc = 100 and density factor Fd = 350, a noteworthy enhancement of mechanical properties was obtained and the geopolymer was still adequately workable to flow by weight of self, without any symbols of instability and fibre clumping. Under this condition, better fibre dispersal and reinforcing productivity can lead to better hardened properties. For FF higher than Fd = 350, fibres tend to come to be entwined together and form clumping resulting from the fibre balling, resulting in worse hardened properties. This research offers a sensible basis for the application of the workability regulator of the fresh properties of fibre-reinforced geopolymer as an operative way to basically obtain ideal mechanical properties.

Funder

Chinese Universities Scientific Fund

Natural Science Basic Research Program of Shaanxi Province

Opening Project of State Key Laboratory of Green Building Materials

Publisher

MDPI AG

Subject

General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3