Co0.5Mn0.5Fe2O4@PMMA Nanoparticles Promotes Preosteoblast Differentiation through Activation of OPN-BGLAP2-DMP1 Axis and Modulates Osteoclastogenesis under Magnetic Field Conditions

Author:

Marycz Krzysztof,Turlej Eliza,Kornicka-Garbowska Katarzyna,Zachanowicz EmiliaORCID,Tomaszewska AnnaORCID,Kulpa-Greszta Magdalena,Pązik RobertORCID

Abstract

The prevalence of osteoporosis in recent years is rapidly increasing. For this reason, there is an urgent need to develop bone substitutes and composites able to enhance the regeneration of damaged tissues which meet the patients’ needs. In the case of osteoporosis, personalized, tailored materials should enhance the impaired healing process and restore the balance between osteoblast and osteoclast activity. In this study, we fabricated a novel hybrid material (Co0.5Mn0.5Fe2O4@PMMA) and investigated its properties and potential utility in the treatment of osteoporosis. The material structure was investigated with X-ray diffraction, Fourier-transform infrared spectroscopy with attenuated total reflectance, FTIR-ATR, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and selected area (electron) diffraction (SAED). Then, the biological properties of the material were investigated with pre-osteoblast (MC3T3-E1) and pre-osteoclasts (4B12) and in the presence or absence of magnetic field, using RT-qPCR and RT-PCR. During the studies, we established that the impact of the new hybrids on the pre-osteoblasts and pre-osteoclasts could be modified by the presence of the magnetic field, which could influence on the PMMA covered by magnetic nanoparticles impact on the expression of genes related to the apoptosis, cells differentiation, adhesion, microRNAs or regulating the inflammatory processes in both murine cell lines. In summary, the Co0.5Mn0.5Fe2O4@PMMA hybrid may represent a novel approach for material optimization and may be a way forward in the fabrication of scaffolds with enhanced bioactivity that benefits osteoporotic patients.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

General Materials Science

Reference31 articles.

1. Osteoporosis: Current Concepts

2. Inflammatory bone loss: pathogenesis and therapeutic intervention

3. Mortality and osteoporotic fractures: Is the link causal, and is it modifiable?;Teng;Clin. Exp. Rheumatol.,2008

4. Mesenchymal Stem Cells in Bone Regeneration

5. Osteoblasts and bone formation;Caetano-Lopes;Acta Reumatol. Port.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3