Abstract
Permafrost and alpine vegetation are widely distributed in Tibet, which is a sensitive area for global climate change. In this study, we inverted the surface deformation from 22 May 2018 to 9 October 2021 in a rectangular area within the city of Linzhi, Tibet, using the Sentinel1-A data and two time-series interferometric system aperture radar (InSAR) techniques. Then, the significant features of surface deformation were analyzed separately according to different vegetation types. Finally, multiple machine learning methods were used to predict future surface deformation, and the results were compared to obtain the model with the highest prediction accuracy. This study aims to provide a scientific reference and decision basis for global ecological security and sustainable development. The results showed that the surface deformation rate in the study area was basically between ±10 mm/a, and the cumulative surface deformation was basically between ±35 mm. The surface deformation of grassland, meadow, coniferous forest, and alpine vegetation were all significantly correlated with NDVI, and the effect of alpine vegetation, coniferous forest, and grassland on permafrost was stronger than that of the meadow. The prediction accuracy of the Holt–Winters model was higher than that of Holt′s model and the ARIMA model; it was expected that the ground surface would keep rising in the next two months, and the ground surface deformation of alpine vegetation and the coniferous forest was relatively small. The above studies indicated that the surface deformation in the Tibetan permafrost region was relatively stable under the conditions of alpine vegetation and coniferous forest. Future-related ecological construction needs to pay more attention to permafrost areas under grassland and meadow conditions, which are prone to surface deformation and affect the stability of ecosystems.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献