A Hybrid Privacy-Preserving Deep Learning Approach for Object Classification in Very High-Resolution Satellite Images

Author:

Boulila WadiiORCID,Khlifi Manel Khazri,Ammar AdelORCID,Koubaa AnisORCID,Benjdira BilelORCID,Farah Imed RiadhORCID

Abstract

Deep learning (DL) has shown outstanding performances in many fields, including remote sensing (RS). DL is turning into an essential tool for the RS research community. Recently, many cloud platforms have been developed to provide access to large-scale computing capacity, consequently permitting the usage of DL architectures as a service. However, this opened the door to new challenges associated with the privacy and security of data. The RS data used to train the DL algorithms have several privacy requirements. Some of them need a high level of confidentiality, such as satellite images related to public security with high spatial resolutions. Moreover, satellite images are usually protected by copyright, and the owner may strictly refuse to share them. Therefore, privacy-preserving deep learning (PPDL) techniques are a possible solution to this problem. PPDL enables training DL on encrypted data without revealing the original plaintext. This study proposes a hybrid PPDL approach for object classification for very-high-resolution satellite images. The proposed encryption scheme combines Paillier homomorphic encryption (PHE) and somewhat homomorphic encryption (SHE). This combination aims to enhance the encryption of satellite images while ensuring a good runtime and high object classification accuracy. The method proposed to encrypt images is maintained through the public keys of PHE and SHE. Experiments were conducted on real-world high-resolution satellite images acquired using the SPOT6 and SPOT7 satellites. Four different CNN architectures were considered, namely ResNet50, InceptionV3, DenseNet169, and MobileNetV2. The results showed that the loss in classification accuracy after applying the proposed encryption algorithm ranges from 2% to 3.5%, with the best validation accuracy on the encrypted dataset reaching 92%.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3