3D Sea Surface Electromagnetic Scattering Prediction Model Based on IPSO-SVR

Author:

Dong ChunleiORCID,Meng Xiao,Guo Lixin,Hu Jiamin

Abstract

An Improved Particle Swarm Optimization Algorithm-Support Vector Regression Machine (IPSO-SVR) prediction model is developed in this paper to predict the electromagnetic (EM) scattering coefficients of the three-dimensional (3D) sea surface for large scenes in real-time. At first, the EM scattering model of the 3D sea surface is established based on the Semi-Deterministic Facet Scattering Model (SDFSM), and the validity of SDFSM is verified by comparing with the measured data. Using the SDFSM, the data set of backscattering coefficients from 3D sea surface is generated for different polarizations as the training samples. Secondly, an improved particle swarm optimization algorithm is proposed by combining the Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). The combined algorithm is utilized to optimize the parameters and train the SVR to build a regression prediction model. In the end, the extrapolated prediction for backscattering coefficients of the 3D sea surface is performed. The Root Mean Square Error (RMSE) of the IPSO-SVR-based prediction model is less than 1.2 dB, and the correlation coefficients are higher than 91%. And the prediction accuracy of the PSO-SVR-based, GA-SVR-based and IPSO-SVR-based prediction models is compared. The average RMSE of the PSO-SVR-based and GA-SVR-based prediction models is 1.4241 dB and 1.6289 dB, respectively. While the average RMSE of the IPSO-SVR-based prediction model is reduced to 1.1006 dB. Besides, the average correlation coefficient of the PSO-SVR-based and GA-SVR-based prediction models is 94.36% and 93.93%, respectively. While the average correlation coefficient of the IPSO-SVR-based prediction model reached 95.12%. It demonstrated that the IPSO-SVR-based prediction model can effectively improve the prediction accuracy compared with the PSO-SVR-based and GA-SVR-based prediction models. Moreover, the simulation time of IPSO-SVR-based prediction model is significantly decreased compared with the SDFSM, and the speedup ratio is greater than 15.0. Therefore, the prediction model in this paper has practical application in the real-time computation of sea surface scattering coefficients in large scenes.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3