An Integrated Quantitative Method Based on ArcGIS Evaluating the Contribution of Rural Straw Open Burning to Urban Fine Particulate Pollution

Author:

Wen Xin,Chen WeiweiORCID,Zhang Pingyu,Chen Jie,Song Guoqing

Abstract

This study presents a GIS-based method integrating hourly transport pathways and wind-field grid reconstruction, straw open burning (SOB) source identification, and a two-stage spatiotemporal multi-box modeling approach to quantify the contribution of external sources of SOB to elevated urban PM2.5 concentrations during a specific pollution episode (PE) at a high temporal resolution of 1 h. Taking Jilin Province as an empirical study, the contribution of SOB in province-wide farmlands to urban haze episodes in Changchun during the SOB season of 2020–2021 was evaluated quantitatively using a combination of multi-source datasets. The results showed that Changchun experienced three severe PEs and one heavy PE during the study period, and the total PM2.5 contributions from SOB sources were 352 μg m−3, 872 μg m−3, and 1224 μg m−3 during the three severe PEs, respectively; these accounted for 7%, 27%, and 23% of the urban cumulative PM2.5 levels, which were more obvious than the contribution during the PE. The total PM2.5 contribution from SOB sources (4.9 μg m−3) was only 0.31% of the urban cumulative PM2.5 level during the heavy PE. According to the analysis of the impact of individual factors, some policy suggestions are put forward for refined SOB management, including control spatial scope, burning time interval, as well as burning area limit under different urban and transport pathways’ meteorological conditions and different transport distances.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3