The Design of Cone and Pendulum Scanning Mode Using Dual-Camera with Multi-Dimensional Motion Imaging Micro-Nanosatellite

Author:

Zhi Zheng,Qu Hongsong,Tao Shuping,Zheng Liangliang,Ying ShipengORCID,Zhu Heqian

Abstract

This paper focuses on the design of a new optical cone and pendulum scanning imaging mode for micro-nanosatellites. This kind of satellite uses a high-resolution camera with a small imaging plane to achieve high-resolution and ultra-wide coverage imaging through the three-dimensional motion of the camera’s wobble, satellite spin, and satellite orbital motion. First, this paper designs a single-camera constant speed OCPSI (optical cone and pendulum scanning imaging) mode. On the premise of ensuring coverage, the motion parameters and imaging parameters are derived. Then, in order to improve the performance and imaging quality of the system, a dual-camera variable speed OCPSI mode is designed. In this method, in order to reduce the overlap ratio, the camera is oscillated at a variable speed. Turn on the cameras in turn at the same time to minimize the overlap. This paper details these working modes. The simulation experiment is carried out using the satellite orbit of 500 km, the focal length of 360 mm, the pixel size of 2.5 μm, the resolution of [5120 × 5120], the number of imaging frames in the pendulum scanning hoop of 10, and the initial camera inclination angle of 30°. The single-camera constant speed OCPSI mode has an effective swath of 1060 km at a ground sampling distance of 5.3 m. The dual-camera variable speed OCPSI mode has an effective width of 966 km under the same conditions. Finally, the ground experiment prototype of OCPSI imaging theory is designed. We choose a camera with a pixel size of 3.45 μm, a resolution of [1440 × 1080], and a focal length of 25 mm. The ground experiment was carried out at the initial camera inclination angle of 10°, the number of imaging frames in the pendulum scanning hoop of 3, and the orbit height of 11 m. The experimental result is that the effective width of OCPSI imaging mode reaches 10.8 m. Compared with the traditional push-broom mode using the same camera, the effective width of 1.64 m is increased by seven times, and the effective width of 3.83 m is increased by three times compared to the traditional whisk-broom imaging mode. This study innovatively integrates three-dimensional motion imaging into aerospace remote sensing and provides a reference for the research on the realization of high-resolution and ultra-wide coverage of micro-nano remote sensing satellites.

Funder

National Natural Science Foundation of China

Key Technological Research Projects of Jilin Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3