Abstract
Potential evapotranspiration (PET) is generally estimated using empirical models; thus, how to improve PET estimation accuracy has received widespread attention in recent years. Among all the models, although the temperature-driven Thornthwaite (TH) model is easy to operate, its estimation accuracy is rather limited. Although previous researchers proved that the accuracy of TH-PET can be greatly improved by using a limited number of variables to conduct calibration exercises, only preliminary experiments were conducted. In this study, to refine this innovation practice, we comprehensively investigated the factors that affect the calibration performances, including the selection of variables, seasonal effects, and spatial distribution of Global Navigation Satellite System (GNSS)/weather stations. By analyzing the factors and their effects, the following conclusions have been drawn: (1) an optimal variable selection scheme containing zenith total delay, temperature, pressure, and mean Julian Date was proposed; (2) the most salient improvements are in the winter and summer seasons, with improvement rates over 80%; (3) with the changes in horizontal (2.771–44.723 km) and height (1.239–344.665 m) differences among ten pairs of GNSS/weather stations, there are no obvious differences in the performances. These findings can offer an in-depth understanding of this practice and provide technical references to future applications.
Funder
National Natural Science Foundation of China
Strategic Priority Research Program of the Chinese Academy of Sciences
Natural Science Foundation of Shandong province
Subject
General Earth and Planetary Sciences
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献