A Comprehensive Study on Factors Affecting the Calibration of Potential Evapotranspiration Derived from the Thornthwaite Model

Author:

Li HaoboORCID,Jiang Chenhui,Choy Suelynn,Wang XiaomingORCID,Zhang KefeiORCID,Zhu Dejun

Abstract

Potential evapotranspiration (PET) is generally estimated using empirical models; thus, how to improve PET estimation accuracy has received widespread attention in recent years. Among all the models, although the temperature-driven Thornthwaite (TH) model is easy to operate, its estimation accuracy is rather limited. Although previous researchers proved that the accuracy of TH-PET can be greatly improved by using a limited number of variables to conduct calibration exercises, only preliminary experiments were conducted. In this study, to refine this innovation practice, we comprehensively investigated the factors that affect the calibration performances, including the selection of variables, seasonal effects, and spatial distribution of Global Navigation Satellite System (GNSS)/weather stations. By analyzing the factors and their effects, the following conclusions have been drawn: (1) an optimal variable selection scheme containing zenith total delay, temperature, pressure, and mean Julian Date was proposed; (2) the most salient improvements are in the winter and summer seasons, with improvement rates over 80%; (3) with the changes in horizontal (2.771–44.723 km) and height (1.239–344.665 m) differences among ten pairs of GNSS/weather stations, there are no obvious differences in the performances. These findings can offer an in-depth understanding of this practice and provide technical references to future applications.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Natural Science Foundation of Shandong province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3