Bacterial Community Changes Associated with Land Use Type in the Forest Montane Region of Northeast China

Author:

Wu Shi-Jun,Deng Jiao-Jiao,Yin You,Qin Sheng-Jin,Zhu Wen-Xu,Zhou Yong-Bin,Wang Bing,Ruan HonghuaORCID,Jin LongORCID

Abstract

Soil microorganisms play a vital role in the biogeochemical cycle, whereas land use change is one of the primary factors that affects the biodiversity and functionality of terrestrial ecosystems. The composition and diversity of bacterial communities (by high-throughput sequencing of the bacterial 16S rRNA gene) were evaluated in the soils of the Montane Region of Northeast China, across different land use types, e.g., natural secondary forest (Quercus mongolica, QM), shrubland (SL), coniferous plantation (Larix gmelinii, LG, and Pinus koraiensis, PK), and agricultural land (Zea mays, ZM). Significant differences in the chemical characteristics and bacterial communities in soils under different land uses were observed in this study. Soil resident TC (total carbon) and TN (total nitrogen) were much higher in secondary natural forest soils, than in coniferous plantation and agricultural soils. Compared with forest and shrubland soils, soil bacterial OTUs, the Chao1 index, and the ACE index were the lowest in the ZM. There were high proportions of Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi, Gemmatimonadetes, Verrucomicrobia, Bacteroidetes, Planctomycetes, Saccharibacteria, and Nitrospirae in agricultural and forest soils, which accounted for over 90% of the reads in each sample. We found that the dominant group in the forest and shrubland soils was Proteobacteria, while the most dominant group in the ZM was Actinobacteria. The results of both heatmap and principal component analyses displayed groups according to land use types, which indicated that the bacterial communities in the areas under study were significantly influenced by long term differently managed land use. Furthermore, redundancy and Pearson correlation analyses revealed that the bacterial communities were primarily regulated by soil characteristics. This suggested that altered land use patterns initiated changes in the chemical properties of the soils, which affected the composition of microbial communities in this area. This provides a scientific basis for the evolutionary mechanism of soil quality, as well as the rational development and utilization of land resources.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3