High-Solids Anaerobic Digestion Followed by Ultrasonication of Digestate and Wet-Type Anaerobic Digestion for Enhancing Methane Yield from OFMSW

Author:

Chowdhury Bappi,Magsi Sarmad Bilal,Ting Hok Nam Joey,Dhar Bipro Ranjan

Abstract

High-solids anaerobic digestion of organic fraction of municipal solid waste often shows inefficient biomethane recovery due to mass transfer limitations. Consequently, this study presents a two-stage anaerobic digestion process combining high-solids anaerobic digestion followed by ultrasonication of digestate and wet-type anaerobic digestion for effective biomethane recovery from the organic fraction of municipal solid waste. The high-solids anaerobic digestion yielded methane production of 210 L CH4/kg volatile solids (VS). The digestate from the high-solids anaerobic digestion process was ultrasonicated at three different specific energy inputs (1000, 2500, and 5000 kJ/kg total solids (TS)). The increases in the soluble chemical oxygen demand (SCOD) concentrations (8%–32%) and volatile solids (VS) removal efficiencies (3.5%–10%) at different specific energy inputs were linearly correlated (R2 = 0.9356). Thus, ultrasonication led to the solubilization of particulate organics and released soluble organic matters. All ultrasonicated digestate samples showed significantly higher biomethane yields than that observed for the untreated digestate samples. The highest methane yield of 132 L CH4/kg VS was observed for a specific energy input of 5000 kJ/kg TS, which was 1.94 times higher than the control (68 L CH4/kg VS). Although specific energy inputs of 1000 kJ/kg TS and 2500 kJ/kg TS showed comparable methane yields (113–114 L CH4/kg VS), they were ~1.67 times higher than the control. Overall, our results suggest that an integrated system of high-solids and wet-type anaerobic digestion with pre-ultrasonication of digestate has the potential to provide a technically viable solution to enhance biomethane recovery from the organic fraction of municipal solid waste.

Funder

Alberta Innovates

Natural Sciences and Engineering Research Council of Canada

University of Alberta

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3