Performance of Citric Acid as a Catalyst and Support Catalyst When Synthesized with NaOH and CaO in Transesterification of Biodiesel from Black Soldier Fly Larvae Fed on Kitchen Waste

Author:

Kathumbi Lilies K.,Home Patrick G.,Raude James M.ORCID,Gathitu Benson B.

Abstract

Current research and development to lower the production cost of biodiesel by utilizing feedstock derived from waste motivates the quest for developing catalysts with high performance in transesterification. This study investigates the performance of citric acid as a catalyst and support catalyst in transesterification of oil from black soldier fly (Hermetia illucens) larvae fed on organic kitchen waste. Two catalysts were prepared by synthesizing citric acid with NaOH and CaO by a co-precipitation and an impregnation method, respectively. The design of the experiment adopted response surface methodology for the optimization of biodiesel productivity by varying: the percentage loading weight of citric acid, the impregnation temperature, the calcinating temperature and the calcinating time. The characteristic activity and reuse of the synthesized catalysts in transesterification reactions were investigated. The morphology, chemical composition and structure of the catalysts were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray fluorescence (XRF) and X-ray diffraction (XRD). High citric acid loading on NaOH and a small amount of citric acid on CaO resulted in improved dispersion and refinement of the particle sizes. Increasing citric acid loading on NaOH improved the CaO and SiO2 composition of the modified catalyst resulting in higher biodiesel yield compared to the modified CaO catalyst. A maximum biodiesel yield of 93.08%, ±1.31, was obtained when NaOH was synthesized with a 130% weight of citric acid at 80 °C and calcinated at 600 °C for 240 min. Comparatively, a maximum biodiesel yield of 90.35%, ±1.99, was obtained when CaO was synthesized with a 3% weight of citric acid, impregnated at 140 °C and calcinated at 900 °C for 240 min. The two modified catalysts could be recycled four times while maintaining a biodiesel yield of more than 70%.

Funder

Japan International Cooperation Agency

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3