Evaluation of Malware Classification Models for Heterogeneous Data

Author:

Bae Ho1ORCID

Affiliation:

1. Department of Cyber Security, Ewha Womans University, Seoul 03760, Republic of Korea

Abstract

Machine learning (ML) has found widespread application in various domains. Additionally, ML-based techniques have been employed to address security issues in technology, with numerous studies showcasing their potential and effectiveness in tackling security problems. Over the years, ML methods for identifying malicious software have been developed across various security domains. However, recent research has highlighted the susceptibility of ML models to small input perturbations, known as adversarial examples, which can significantly alter model predictions. While prior studies on adversarial examples primarily focused on ML models for image processing, they have progressively extended to other applications, including security. Interestingly, adversarial attacks have proven to be particularly effective in the realm of malware classification. This study aims to explore the transparency of malware classification and develop an explanation method for malware classifiers. The challenge at hand is more complex than those associated with explainable AI for homogeneous data due to the intricate data structure of malware compared to traditional image datasets. The research revealed that existing explanations fall short in interpreting heterogeneous data. Our employed methods demonstrated that current malware detectors, despite high classification accuracy, may provide a misleading sense of security and measuring classification accuracy is insufficient for validating detectors.

Funder

Institute of Information & Communications Technology Planning & Evaluation

Artificial Intelligence Convergence Innovation Human Resources Development

National Statistics Data While Guaranteeing the Utility of Statistical Analysis

Ewha Womans University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3