Sensing by Molecularly Imprinted Polymer: Evaluation of the Binding Properties with Different Techniques

Author:

Pesavento Maria,Marchetti Simone,De Maria Letizia,Zeni Luigi,Cennamo NunzioORCID

Abstract

The possibility of investigating the binding properties of the same molecularly imprinted polymer (MIP), most probably heterogeneous, at various concentration levels by different methods such as batch equilibration and sensing, is examined, considering two kinds of sensors, based respectively on electrochemical and surface plasmon resonance (SPR) transduction. As a proof of principle, the considered MIP was obtained by non-covalent molecular imprinting of 2-furaldehyde (2-FAL). It has been found that different concentration ranges of 2-FAL in aqueous matrices can be measured by the two sensing methods. The SPR sensor responds in a concentration range from 1 × 10−4 M down to about 1 × 10−7 M, while the electrochemical sensor from about 5 × 10−6 M up to about 9 × 10−3 M. The binding isotherms have been fit to the Langmuir adsorption model, in order to evaluate the association constant. Three kinds of sites with different affinity for 2-FAL have been detected. The sites at low affinity are similar to the interaction sites of the corresponding NIP since they have a similar association constant. This is near to the affinity evaluated by batch equilibration too. The same association constant has been evaluated in the same concentration range. The sensing methods have been demonstrated to be very convenient for the characterization of the binding properties of MIP in comparison to the batch equilibration, in terms of reproducibility and low amount of material required for the investigation.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3