A Multiple Time Scales Rolling Coordinative Dispatching Method for an Island Microgrid with High Proportion Tidal Current Energy Access and Demand Response Resources

Author:

Ouyang Yani,Zhao Wei,Wang Haifeng,Wang WenyongORCID

Abstract

Currently, the ocean energy strategy is rapidly developing, and a high proportionate tidal current energy grid connection presents significant obstacles to the planning and secure and stable operation of an island microgrid. For an island microgrid with high proportion tidal current energy access and demand response resources, this research suggests a multiple time scales rolling coordinative dispatching method. An MPPT control based on Q-Learning algorithm is first developed for real-time maximum power tracking of tidal current energy generation after the island microgrid’s topology has been examined. Following that, a multiple time scales rolling coordinative dispatching’s fundamental architecture and implementation method are provided, with equal time intervals coordinated in a step-by-step recursive way. In the example analysis of an island microgrid, we consider the rigid demand load that does not participate in the demand side response, and the ship load and controllable load that participate in the demand side response. On sea islands, ship loads on the long timeframe achieve traffic and energy interaction, and dispatchable loads on the short timescale participate in supply and demand balancing. This is due to the multiple time scales properties of demand response resources. In addition, a multiple time scales rolling coordinative dispatching model for an island microgrid is developed. It includes day-ahead, intraday, and real-time components. Finally, example analysis is used to confirm the dispatching method’s usefulness and advancement, and we conclude that the tidal current energy consumption rate of the island microgrid is increased by 17.08%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference23 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3