Abstract
Buildings use up to 40% of the global primary energy and 30% of global greenhouse gas emissions, which may significantly impact climate change. Heating, ventilation, and air-conditioning (HVAC) systems are among the most significant contributors to global primary energy consumption and carbon gas emissions. Furthermore, HVAC energy demand is expected to rise in the future. Therefore, advancements in HVAC systems’ performance and design would be critical for mitigating worldwide energy and environmental concerns. To make such advancements, energy modeling and model predictive control (MPC) play an imperative role in designing and operating HVAC systems effectively. Building energy simulations and analysis techniques effectively implement HVAC control schemes in the building system design and operation phases, and thus provide quantitative insights into the behaviors of the HVAC energy flow for architects and engineers. Extensive research and advanced HVAC modeling/control techniques have emerged to provide better solutions in response to the issues. This study reviews building energy modeling techniques and state-of-the-art updates of MPC in HVAC applications based on the most recent research articles (e.g., from MDPI’s and Elsevier’s databases). For the review process, the investigation of relevant keywords and context-based collected data is first carried out to overview their frequency and distribution comprehensively. Then, this review study narrows the topic selection and search scopes to focus on relevant research papers and extract relevant information and outcomes. Finally, a systematic review approach is adopted based on the collected review and research papers to overview the advancements in building system modeling and MPC technologies. This study reveals that advanced building energy modeling is crucial in implementing the MPC-based control and operation design to reduce building energy consumption and cost. This paper presents the details of major modeling techniques, including white-box, grey-box, and black-box modeling approaches. This paper also provides future insights into the advanced HVAC control and operation design for researchers in relevant research and practical fields.
Funder
National Research Foundation of Korea
Korea Institute of Energy Technology Evaluation and Planning
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference180 articles.
1. Global Energy & CO2 Status Report: The Latest Trends in Energy and Emissions in 2018, 2018.
2. Available online: www.eia.gov/ieo. EIA: International Energy Outlook 2019 with Projections to 2050, 2021.
3. State of the art review on model predictive control (MPC) in Heating Ventilation and Air-conditioning (HVAC) field;Yao;Build. Environ.,2021
4. Modeling techniques used in building HVAC control systems: A review;Afroz;Renew. Sustain. Energy Rev.,2018
5. Lamberti, G., Salvadori, G., Leccese, F., Fantozzi, F., and Bluyssen, P.M. Advancement on thermal comfort in educational buildings: Current issues and way forward. Sustainability, 2021. 13.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献