Review on the Hydrogen Dispersion and the Burning Behavior of Fuel Cell Electric Vehicles

Author:

Lan HaoORCID,Wang Guiyun,Zhao Kun,He Yuntang,Zheng Tianlei

Abstract

The development of a hydrogen energy-based society is becoming the solution for more and more countries. Fuel cell electric vehicles are the best carriers for developing a hydrogen energy-based society. The current research on hydrogen leakage and the diffusion of fuel cell electric vehicles has been sufficient. However, the study of hydrogen safety has not reduced the safety concerns for society and government management departments, concerning the large-scale promotion of fuel cell electric vehicles. Hydrogen safety is both a technical and psychological issue. This paper aims to provide a comprehensive overview of fuel cell electric vehicles’ hydrogen dispersion and the burning behavior and introduce the relevant work of international standardization and global technical regulations. The CFD simulations in tunnels, underground car parks, and multistory car parks show that the hydrogen escape performance is excellent. At the same time, the research verifies that the flow, the direction of leakage, and the vehicle itself are the most critical factors affecting hydrogen distribution. The impact of the leakage location and leakage pore size is much smaller. The relevant studies also show that the risk is still controllable even if the hydrogen leakage rate is increased ten times the limit of GTR 13 to 1000 NL/min and then ignited. Multi-vehicle combustion tests of fuel cell electric vehicles showed that adjacent vehicles were not ignited by the hydrogen. This shows that as long as the appropriate measures are taken, the risk of a hydrogen leak or the combustion of fuel cell electric vehicles is controllable. The introduction of relevant standards and regulations also indirectly proves this point. This paper will provide product design guidelines for R&D personnel, offer the latest knowledge and guidance to the regulatory agencies, and increase the public’s acceptance of fuel cell electric vehicles.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference48 articles.

1. Limited emission reductions from fuel subsidy removal except in energy-exporting regions

2. Hydrogen Roadmap Europe: A Sustainable Pathway for The European Energy Transition https://www.fch.europa.eu/news/hydrogen-roadmap-europe-sustainable-pathway-european-energy-transition

3. Hydrogen Supply Chain for the Realization of a Decarbonized Hydrogen Society https://www.env.go.jp/seisaku/list/ondanka_saisei/lowcarbon-h2-sc/en/index.html

4. Medium- and Long-Term Plan for the Development of Hydrogen Energy Industry (2021–2035)

5. South Korea’s Hydrogen Industrial Strategy https://www.csis.org/analysis/south-koreas-hydrogen-industrial-strategy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3