Automatic Resonance Tuning Technique for an Ultra-Broadband Piezoelectric Energy Harvester

Author:

Kouritem Sallam A.,Bani-Hani Muath A.ORCID,Beshir MohamedORCID,Elshabasy Mohamed M. Y. B.ORCID,Altabey Wael A.ORCID

Abstract

The main drawback of energy harvesting using the piezoelectric direct effect is that the maximum electric power is generated at the fundamental resonance frequency. This can clearly be observed in the size and dimensions of the components of any particular energy harvester. In this paper, we are investigating a new proposed energy harvesting device that employs the Automatic Resonance Tuning (ART) technique to enhance the energy harvesting mechanism. The proposed harvester is composed of a cantilever beam and sliding masse with varying locations. ART automatically adjusts the energy harvester’s natural frequency according to the ambient vibration natural frequency. The ART energy harvester modifies the natural frequency of the harvester using the motion of the mobile (sliding) mass. An analytical model of the proposed model is presented. The investigation is conducted using the Finite Element Method (FEM). THE FEM COMSOL model is successfully validated using previously published experimental results. The results of the FEM were compared with the experimental and analytical results. The validated model is then used to demonstrate the displacement profile, the output voltage response, and the natural frequency for the harvester at different mass positions. The bandwidth of the ART harvester (17 Hz) is found to be 1130% larger compared to the fixed resonance energy harvester. It is observed that the proposed broadband design provides a high-power density of 0.05 mW mm−3. The piezoelectric dimensions and load resistance are also optimized to maximize the output voltage output power.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3