Parameter Optimization Method for Power System of Medium-Sized Bus Based on Orthogonal Test

Author:

Wang XingxingORCID,Ye Peilin,Zhang Yujie,Ni Hongjun,Deng Yelin,Lv Shuaishuai,Yuan Yinnan,Zhu Yu

Abstract

Accurate and reasonable matching design is a current and difficult point in electric vehicle research. This paper presents a parameter optimization method for the power system of a medium-sized bus based on the combination of the orthogonal test and the secondary development of ADVISOR software. According to vehicle theoretical knowledge and the requirements of the vehicle power performance index, the parameters of the vehicle power system were matched and designed. With the help of the secondary development of MATLAB/Simulink and ADVISOR software, the modeling of the key parts of the vehicle was carried out. Considering the influence of the number of battery packs, motor power model, wheel rolling resistance coefficient, and wind resistance coefficient on the design of the power system, an L9 (34)-type orthogonal table was selected to design the orthogonal test. The dynamic performance and driving range of the whole vehicle were simulated using different design schemes, and the accuracy of the simulation results was verified by comparing and analyzing the simulation images. The results demonstrated that in the environment where the wind resistance coefficient was 0.6 and the wheel rolling resistance coefficient was 0.009, with 240 sets of lithium batteries (battery energy, 264 kW h; battery capacity, 100 Ah) as the power source, the pure electric medium-sized bus equipped with the PM165 permanent magnet motor (rated power, 60 kW; rated torque, 825 N m) could obtain the best power performance and economic performance. The research content of this paper provides a certain reference for the design of shuttle buses for Nantong’s bus system, effectively reduces the testing costs of the vehicle development process, and provides a new idea for the power system design of pure electric buses.

Funder

the National Natural Science Foundation of China

the Jiangsu Provincial Key Research and Development Program of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3