Investigation of Performance and Emission Characteristics of CI Engine Using Diesel and Waste Cooking Oil Blends

Author:

Solangi Faheem Ahmed,Memon Liaquat Ali,Samo Saleem Raza,Luhur Muhammad Ramzan,Bhutto Aqeel Ahmed,Ansari Ali Murtaza

Abstract

Reusing waste cooking oil (WCO) as fuel in compression ignition (CI) engine offers a sustainable solution for energy scarcity and environmental protection. WCO and n-pentanol ternary blends deliver are attractive prospects in utilization as bio-components and recycled components to moderately substitute diesel fuel. The current study intends to investigate the performance and emission characteristics of a single cylinder CI engine, having constant load at a uniform speed of 1300 rpm, using diesel-waste cooking oil n-pentanol blends. Blends chosen and analogized with diesel oil as reference fuel and their contents were the following: (1) D95-WCO5 (95%vol. diesel, WCO5%vol. waste cooking oil, (2) D65-WCO20-Pe15 (65%vol. diesel, 20%vol. waste cooking oil, and 15%vol. n-pentanol) and (3) D60-WCO20-Pe20 (60%vol. diesel, 20%vol. waste cooking oil and 20%vol. n-pentanol). The experimental results revealed that with the DF95-WCO5 blend the BSFC improved by 0.32%. However, with the addition of n-pentanol as a ternary blend; DF65-WCO20-Pe15 and DF60-WCO20-Pe20 resulted in improvements of 0.49% and 0.68% respectively. The BTE for DF95-WCO5 increased by 38.7%, while the increase was 39.2% for DF65-WCO20-Pe15 and 39.6% for DF60-WCO20-Pe20, which was less, as compared with diesel fuel. The lowermost level of CO discharge was achieved when the engine was fueled with DF65-WCO20-Pe15 and DF60-WCO20-Pe20, due to the highest level of saturation. CO2, in the cases of DF65-WCO20-Pe15 and DF60-WCO20-Pe20, increased, as compared to diesel fuel under the same engine operating conditions. However, the binary blend DF95-WCO5 resulted in decreased CO2 as analogized to diesel, because of incomplete combustion of the fuel. During experimental work it could be observed that the DF95-WCO5 binary blend produced higher Particulate material (PM-1, PM-2.5, PM-7 and PM-10) emissions, compared to DF100. Moreover, with the addition of n-pentanol as a ternary blend in the ratio of 15 to 20%, emission was further reduced. This indicated that direct exertion of WCO in engines must be promoted, as it is an impressive choice for waste recapture.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3