Research on the Relationship between Sediment Concentration and Centrifugal Pump Performance Parameters Based on CFD Mixture Model

Author:

Wu Xinhao,Su Peilan,Wu Jianhua,Zhang Yusheng,Wang Baohe

Abstract

To study the relationship between sediment concentration and the performance parameters of centrifugal pumps, Jiamakou water supply pumping station with total installed capacity of 30,880 kW was selected to analyze characteristics of the centrifugal pump in this paper. Based on a CFD mixture model, the effects of different sediment concentrations on the movement of solid–liquid two-phase flow and the performance parameters of the centrifugal pump were obtained. Then, fitting equations were established between performance parameters (head, flow rate, shaft power, and efficiency) of the centrifugal pump and sediment concentration at three working conditions (0.8 Q = 2 m3/s, Q = 2.5 m3/s, 1.2 Q = 3 m3/s) by the polynomial least-square method. Calculated values of fitting equations were compared with the measured values in centrifugal pump operation. The results show that, as the sediment concentration increases from 0.1% to 1%, the maximum volume fraction of sediment at blade outlet increased from 0.14% to 1.14%, and the maximum volume fraction of sediment at blade outlet increased from 0.7% to 2.29%. The turbulent kinetic energy inside the centrifugal pump increased from 8.74 m2/s2 to 10.78 m2/s2. The calculated values of fitting equation are in good agreement with the measured values in centrifugal pump operation, and the maximum errors of head, flow rate, and efficiency are 6.48%, 3.54%, and 2.87%, respectively. Therefore, the reliability of the fitting equations is verified. The research method can provide a reference for the calculation of performance parameters for centrifugal pumps in other water supply pumping stations with sediment-laden flow.

Funder

Science and Technology Department of Shanxi Province

Shanxi Provincial Education Department

Shanxi Provincial Department of Water Resources

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference33 articles.

1. Cause Analysis of the Centennial Trend and Recent Fluctuation of the Yellow River Sediment Load;Hu;Adv. Water Sci.,2020

2. Experimental Study on the Improvement of the Particle Gradation of the Yellow River Silt Based on MICP Technology;Yue;Adv. Eng. Sci.,2021

3. Sediment erosion in the impeller of a double-suction centrifugal pump—A case study of the Jingtai Yellow River Irrigation Project, China;Shen;Wear,2019

4. Numerical simulation and analysis of solid-liquid two-phase flow in centrifugal pump;Zhang;Chin. J. Mech. Eng.,2013

5. A Numerical Study of the Impact of Fine Sand-particles on Centrifugal Pump Working Characteristics;Wang;Chin. Rural Water Hydropower,2013

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3