A Comparative Analysis of Discrete Entropy Estimators for Large-Alphabet Problems

Author:

Pinchas Assaf1,Ben-Gal Irad2ORCID,Painsky Amichai2ORCID

Affiliation:

1. School of Electrical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel

2. Industrial Engineering Department, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel

Abstract

This paper presents a comparative study of entropy estimation in a large-alphabet regime. A variety of entropy estimators have been proposed over the years, where each estimator is designed for a different setup with its own strengths and caveats. As a consequence, no estimator is known to be universally better than the others. This work addresses this gap by comparing twenty-one entropy estimators in the studied regime, starting with the simplest plug-in estimator and leading up to the most recent neural network-based and polynomial approximate estimators. Our findings show that the estimators’ performance highly depends on the underlying distribution. Specifically, we distinguish between three types of distributions, ranging from uniform to degenerate distributions. For each class of distribution, we recommend the most suitable estimator. Further, we propose a sample-dependent approach, which again considers three classes of distribution, and report the top-performing estimators in each class. This approach provides a data-dependent framework for choosing the desired estimator in practical setups.

Funder

Israel Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3