Quantifying the Coupled Effect between Soil Moisture and Climate in the Desert Steppe Environment of Inner Mongolia, China

Author:

Chang Yaowen1,Yi Wenying1,Chen Jianpeng1,Liu Xia1,Meng Wenting1,Fan Zhaofei2ORCID,Zhang Ruiqiang3,Hai Chunxing4

Affiliation:

1. Jiangsu Key Laboratory of Soil and Water Conservation and Ecological Restoration, Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Forestry College of Nanjing Forestry University, Nanjing 210037, China

2. College of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36839, USA

3. The Institute of Water Resources for Pastoral Areas, Hohhot 010020, China

4. College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, China

Abstract

Soil moisture is an important variable affecting land surface and climate interactions. This study used cross-wavelet and wavelet coherence methods to analyze the relationship between soil moisture and climatic factors in the study area based on the soil moisture data sequence and corresponding meteorological data observed on the surface of the desert steppe in Inner Mongolia. The results showed that soil moisture had a relatively high- or low-value period for months or even years. Soil moisture was significantly different between different slope positions and soil layers. The fluctuation and mean of soil moisture decreased gradually with the deepening of soil depth. The relationship between soil moisture and meteorological factors varied with time scales. The influence of precipitation on soil moisture was significant at time scales of 1–6 months and 10–15 months, while air temperature and soil temperature showed stable and continuous periodic influence on soil moisture at the time scale of 10–15 months. Climate indexes for the Pacific region, Pacific Decadal Oscillation (PDO), and North Atlantic Oscillation index (NAO) were the main climatic factors controlling soil moisture in the Inner Mongolia desert steppe and strongly correlated with soil moisture primarily on time scales of 4–7 months and 10–15 months. Pacific Decadal Oscillation (PDO) and Indian Ocean basin-wide warming (IOBW) showed a strong lag effect on soil moisture.

Funder

the National Natural Science Foundation of China

the National Key Research and Development Program of China

Jiangsu Province “333 Project” scientific research project

the Funding Project for advantageous disciplines construction of Jiangsu higher education institutions

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3