Effect of Alloying on Microstructure and Mechanical Properties of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy

Author:

Tian Xue-Yao1,Zhang Hong-Liang1,Nong Zhi-Sheng1ORCID,Cui Xue1,Gu Ze-Hao1,Liu Teng1,Li Hong-Mei1ORCID,Arzikulov Eshkuvat12

Affiliation:

1. School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China

2. Institute of Physics, Samarkand State University Named after Sharof Rashidov, University Boulevard 15, Samarkand 140104, Uzbekistan

Abstract

In order to explore the effect of alloying on the microstructures and mechanical properties of AlCoCrFeNi2.1 eutectic high-entropy alloys (EHEAs), 0.1, 0.2, and 0.3 at.% V, Mo, and B were added to the AlCoCrFeNi2.1 alloy in this work. The effects of the elements and contents on the phase composition, microstructures, mechanical properties, and fracture mechanism were investigated. The results showed that the crystal structures of the AlCoCrFeNi2.1 EHEAs remained unchanged, and the alloys were still composed of FCC and BCC structures, whose content varied with the addition of alloying elements. After alloying, the aggregation of Co, Cr, Al, and Ni elements remained unchanged, and the V and Mo were distributed in both dendritic and interdendritic phases. The tensile strengths of the alloys all exceeded 1000 MPa when the V and Mo elements were added, and the Mo0.2 alloy had the highest tensile strength, of 1346.3 MPa, and fracture elongation, of 24.6%. The alloys with the addition of V and Mo elements showed a mixed ductile and brittle fracture, while the B-containing alloy presented a cleavage fracture. The fracture mechanism of Mo0.2 alloy is mainly crack propagation in the BCC lamellae, and the FCC dendritic lamellae exhibit the characteristics of plastic deformation.

Funder

Liaoning Provincial Natural Science Foundation of China

basic scientific research project of higher education Department of Liaoning Province

fundamental research funds for the universities of Liaoning province

Shenyang Science and Technology Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3