Mixed-Ligand Engineering to Enhance Luminescence of Mn2+-Based Metal Halides for Wide Color Gamut Display

Author:

Wu Zhi1ORCID,Tang Huidong1ORCID,Dai Tianhao1,Long Yuxi1,Luo Dan1,Jiang Pengcheng1,Xiong Xin1ORCID,Xu Yanqiao2,Zhang Xiaojun2,Hu Qing23

Affiliation:

1. School of Material Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China

2. National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen 333001, China

3. School of Material Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333001, China

Abstract

Lead-free Mn2+-based metal halide materials are now being considered as clean candidates for backlight displays and lights due to the d–d transition, diverse components, and environmental friendliness. Therefore, efficient and stable Mn2+-based metal halide phosphors are in great demand for practical applications. In this work, adopting the mixed-ligand strategy, a series of [(CH3)4N]2−x[(C2H5)4N]xMnCl4 phosphors were synthesized by mechanochemical process. With the increase molar ratio of (CH3)4N/(C2H5)4N, the phase of phosphors is transformed from orthorhombic to tetragonal. Compared to [(CH3)4N]2MnCl4 and [(C2H5)4N]2MnCl4 phosphors, the mixed-ligand strategy significantly boosts the green emission intensity of Mn2+-based metal halide phosphors. The obtained [(CH3)4N][(C2H5)4N]MnCl4 phosphors exhibit a high photoluminescence quantum yield (PLQY) of 83.78% under 450 nm excitation, which is attributed to the modulation of the adjacent [MnCl4]2- distance by using the different chain length of organic cations, effectively suppressing non-radiative recombination. Additionally, the [(CH3)4N][(C2H5)4N]MnCl4 phosphors exhibit a green emission at 516 nm, narrow full width at half-maximum (FWHM) of 45.53 nm, and good thermal stability. The constructed white light-emitting diode (WLED) device exhibits a wide color gamut of 108.3% National Television System Committee, demonstrating the suitability of the [(CH3)4N][(C2H5)4N]MnCl4 phosphors as a green emitter for WLED displays and lightings. This work provides a new way to modulate the PL performance of manganese-based metal halides for application in the optoelectronic field.

Funder

Hunan University Students Innovation and Entrepreneurship Training Program

National Natural Science Foundation of China

Jiangxi Provincial Natural Science Foundation

Jingdezhen Science and Technology Bureau Planning Project

Characteristic Application Discipline of Material Science and Engineering in Hunan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3