Cold-Source Composite Welding Repair of 9Cr2Mo Thick-Walled Parts: Microstructure, Mechanical Properties, and Finite Element Simulation

Author:

Yin Danqing12,Zhao Haoqi1,Wang Yonglei1,Ma Ning1ORCID,Chang Junming1,Wang Meng1,Dong Jinglong3

Affiliation:

1. School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China

2. Longmen Laboratory, Luoyang 471000, China

3. Luoyang Leishuo Additive Manufacturing Co., Ltd., Luoyang 471100, China

Abstract

The restoration of large support rollers poses an industrial challenge due to the high energy consumption of traditional repair methods. Consequently, a novel approach for repairing support rollers has been introduced and tested on thick-walled components. Finite element simulations aided the study of welding repairs for large thick-walled components, examining element distribution, microstructure, mechanical properties, and residual stress distribution across various processes. The results indicate that employing ABAQUS2023 finite element software to analyze stress variations under different working conditions, the Dynamically Controlled Low-Stress No-Distortion method effectively mitigates residual stresses both during and post welding, reducing average transverse residual stresses by 14.5% and average longitudinal residual stresses in the weld zone by 29.1%. The Dynamically Controlled Low-Stress No-Distortion method narrows the high-temperature range of the heat source, consequently decreasing the size of the heat-affected zone by 33.3% compared to conventional welding. The microstructure featured dendrites and equiaxed columnar crystals, with the Dynamically Controlled Low-Stress No-Distortion method capable of grain refinement, transforming some equiaxed columnar crystals into cellular structures. As grains were refined, microhardness improved, with the covering layer’s microhardness rising by 14.68%. A comparison between simulated and measured values of lateral and longitudinal residual stresses at corresponding points revealed discrepancies of 14.6% and 20.5% in accuracy, respectively.

Funder

Core Technology Research and Development Project for Public Welfare of Luoyang City

Frontier Exploration Projects of Longmen Laboratory

China Postdoctoral Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3