Multiscale Analysis of Sandwich Beams with Polyurethane Foam Core: A Comparative Study of Finite Element Methods and Radial Point Interpolation Method

Author:

Belinha Jorge12ORCID

Affiliation:

1. Department of Mechanical Engineering, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, n. 431, 4200-072 Porto, Portugal

2. Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

Abstract

This study presents a comprehensive multiscale analysis of sandwich beams with a polyurethane foam (PUF) core, delivering a numerical comparison between finite element methods (FEMs) and a meshless method: the radial point interpolation method (RPIM). This work aims to combine RPIM with homogenisation techniques for multiscale analysis, being divided in two phases. In the first phase, bulk PUF material was modified by incorporating circular holes to create PUFs with varying volume fractions. Then, using a homogenisation technique coupled with FEM and four versions of RPIM, the homogenised mechanical properties of distinct PUF with different volume fractions were determined. It was observed that RPIM formulations, with higher-order integration schemes, are capable of approximating the solution and field smoothness of high-order FEM formulations. However, seeking a comparable field smoothness represents prohibitive computational costs for RPIM formulations. In a second phase, the obtained homogenised mechanical properties were applied to large-scale sandwich beam problems with homogeneous and approximately functionally graded cores, showing RPIM’s capability to closely approximate FEM results. The analysis of stress distributions along the thickness of the beam highlighted RPIM’s tendency to yield lower stress values near domain edges, albeit with convergence towards agreement among different formulations. It was found that RPIM formulations with lower nodal connectivity are very efficient, balancing computational cost and accuracy. Overall, this study shows RPIM’s viability as an alternative to FEM for addressing practical elasticity applications.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3