Inhibition of Neutrophil Extracellular Traps Formation by Cl-Amidine Alleviates Lipopolysaccharide-Induced Endometritis and Uterine Tissue Damage

Author:

Shen Wenxiang,Oladejo Ayodele OlaoluORCID,Ma Xiaoyu,Jiang Wei,Zheng Juanshan,Imam Bereket HabteORCID,Wang ShengyiORCID,Wu Xiaohu,Ding Xuezhi,Ma Baohua,Yan Zuoting

Abstract

Endometritis is a common disease that affects the production in dairy cows and leads to severe losses in the dairy industry. Neutrophil extracellular traps (NETs) formation promotes pathogenic invasions of the lumen of the tissue, leading to inflammatory diseases such as mastitis, pancreatitis, and septic infection. However, research that could show the relationship between NETs and endometritis is scarce. Cl-amidine has been shown to ameliorate the disease squealing and clinical manifestation in various disease models. In this study, we investigated the role of NETs in LPS-triggered endometritis in rats and evaluated the therapeutic efficiency of Cl-amidine. An LPS-induced endometritis model in rats was established and found that the formation of NETs can be detected in the rat’s uterine tissues in vivo. In addition, Cl-amidine treatment can inhibit NETs construction in LPS-induced endometritis in rats. Myeloperoxidase (MPO) activity assay indicated that Cl-amidine treatment remarkably alleviated the inflammatory cell infiltrations and attenuated the damage to the uterine tissue. The Western blot results indicated that Cl-amidine decreased the expression of citrullinated Histone H3 (Cit-H3) and high-mobility group box 1 protein (HMGB1) protein in LPS-induced rat endometritis. The ELISA test indicated that Cl-amidine treatment significantly inhibited the expression of the pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. The NETs were determined by Quant-iTTMPicoGreen dsDNA kit®, which indicated that Cl-amidine significantly inhibited the NETs in rat serum. All results showed that Cl-amidine effectively reduced the expression of Cit-H3 and HMGB1 proteins by inhibiting the formation of NETs, thereby attenuating the inflammatory response to LPS-induced endometritis in rats. Hence, Cl-amidine could be a potential candidate for the treatment of endometritis.

Funder

National Key R&D Program of China

Science and Technology Innovation Project

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3