Alveolar Bone Preservation Using a Combination of Nanocrystalline Hydroxyapatite and Injectable Platelet-Rich Fibrin: A Study in Rats

Author:

Pascawinata Andries1,Revilla Gusti2,Sahputra Roni Eka3,Arief Syukri4

Affiliation:

1. Doctoral Student of Biomedical, Faculty of Medicine, Andalas University, Padang 25163, Indonesia

2. Department of Anatomy, Faculty of Medicine, Andalas University, Padang 25163, Indonesia

3. Department of Surgery, Orthopaedic Division, Faculty of Medicine, Andalas University, Padang 25163, Indonesia

4. Department of Chemistry, Faculty of Mathematics and Natural Sciences, Andalas University, Padang 25163, Indonesia

Abstract

Alveolar bone resorption is a post-extraction complication wherein there is a reduction in the dimensions and quality of the alveolar bone. This study aimed to examine the effects of implantation of a combination of nanocrystalline hydroxyapatite (nHA) and injectable platelet-rich fibrin (IPRF) on the expression of tartrate-resistant acid phosphatase (TRAP), alkaline phosphatase (ALP), osteocalcin (OCN), and new bone formation. A total of 32 male rats had their upper right incisors extracted under general anesthesia and were then divided into a control group, nHA group, IPRF group, and nHA-IPRF group. Decapitation was carried out on day 14 and day 28 in each group and the jaws of each rat were subjected to immunohistochemical and histological analysis. The results showed a decrease in TRAP expression in the nHA-IPRF group compared with the control group on day 14 (p = 0.074) and day 28 (p = 0.017). The study also showed an increase in ALP and OCN in the HA-IPRF group on day 14 and day 28 compared with the control group. New bone formation suggested a significant increase in the nHA-IPRF group compared with the control group on day 14 (p = 0.001) and day 28 (p = 0.001). nHA-IPRF implantation can suppress alveolar bone resorption, which is indicated by decreased TRAP expression, and it can increase bone growth, as indicated by increased expression of ALP, OCN, and new bone formation.

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,General Medicine,Microbiology

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3