Constructing Lipoparticles Capable of Endothelial Cell-Derived Exosome-Mediated Delivery of Anti-miR-33a-5p to Cultured Macrophages

Author:

Echesabal-Chen Jing1,Huang Kun1,Vojtech Lucia2ORCID,Oladosu Olanrewaju1,Esobi Ikechukwu1,Sachdeva Rakesh3,Vyavahare Naren4,Jo Hanjoong5,Stamatikos Alexis1

Affiliation:

1. Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA

2. Department of Obstetrics & Gynecology, University of Washington, Seattle, WA 98109, USA

3. Department of Chemistry, Clemson University, Clemson, SC 29634, USA

4. Department of Bioengineering, Clemson University, Clemson, SC 29634, USA

5. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA

Abstract

Atherosclerosis is driven by intimal arterial macrophages accumulating cholesterol. Atherosclerosis also predominantly occurs in areas consisting of proinflammatory arterial endothelial cells. At time of writing, there are no available clinical treatments that precisely remove excess cholesterol from lipid-laden intimal arterial macrophages. Delivery of anti-miR-33a-5p to macrophages has been shown to increase apoAI-mediated cholesterol efflux via ABCA1 upregulation but delivering transgenes to intimal arterial macrophages is challenging due to endothelial cell barrier integrity. In this study, we aimed to test whether lipoparticles targeting proinflammatory endothelial cells can participate in endothelial cell-derived exosome exploitation to facilitate exosome-mediated transgene delivery to macrophages. We constructed lipoparticles that precisely target the proinflammatory endothelium and contain a plasmid that expresses XMOTIF-tagged anti-miR-33a-5p (LP-pXMoAntimiR33a5p), as XMOTIF-tagged small RNA demonstrates the capacity to be selectively shuttled into exosomes. The cultured cells used in our study were immortalized mouse aortic endothelial cells (iMAECs) and RAW 264.7 macrophages. From our results, we observed a significant decrease in miR-33a-5p expression in macrophages treated with exosomes released basolaterally by LPS-challenged iMAECs incubated with LP-pXMoAntimiR33a5p when compared to control macrophages. This decrease in miR-33a-5p expression in the treated macrophages caused ABCA1 upregulation as determined by a significant increase in ABCA1 protein expression in the treated macrophages when compared to the macrophage control group. The increase in ABCA1 protein also simulated ABCA1-dependent cholesterol efflux in treated macrophages—as we observed a significant increase in apoAI-mediated cholesterol efflux—when compared to the control group of macrophages. Based on these findings, strategies that involve combining proinflammatory-targeting lipoparticles and exploitation of endothelial cell-derived exosomes appear to be promising approaches for delivering atheroprotective transgenes to lipid-laden arterial intimal macrophages.

Funder

SC BioCRAFT Pilot Project award

Hatch Project

Clemson University Division of Research

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3