Ion Flotation of Ytterbium Water-Salt Systems—An Innovative Aspect of the Modern Industry

Author:

Lobacheva Olga LeonidovnaORCID

Abstract

Considering the ever-increasing role of rare-earth elements (REE) in the modern hi-tech field, their effective use has tremendous significance, although the production process is inevitably linked to the large volumes of industrial ammonia effluents and heavy metal wastes. In the process of metallurgical separation of metals, the emission of large volumes of noxious gases and radioactive substances is inevitable. Lean technogenic raw material processing is sensible under the condition of the development of non-waste technology. The lack of competent regulations governing the disposal of waste containing REE has an impact on adjacent territories, accumulating in water bodies and, as a result, in the human body. Such an impact cannot pass without a trace, however, the ambiguity of opinions in the scientific community regarding the toxic effects of REE on living organisms determines the relevance of a more detailed study of this issue. The study of ytterbium ions removal from aqueous standard test solutions by the adsorptive bubble method—ion flotation—was conducted. The experiments showed that by using the ion flotation method, the maximum removal of ytterbium (III) was achieved at pH = 8.30. It was shown that ytterbium (+3) distribution coefficients as a function of aqueous phase pH value in the process of ion flotation with sodium dodecyl sulphate were derived. The comparison of values of removal pH with those of hydrate formation pH allowed to conclude that ytterbium floate as basic dihydroxoytterbium dodecyl sulphate Yb(OH)2(C12H25OSO3).

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3