Viral Hemorrhagic Septicemia Virus Activates Integrated Stress Response Pathway and Induces Stress Granules to Regulate Virus Replication

Author:

Ramnani Barkha1,Powell Shelby1,Shetty Adarsh G.1,Manivannan Praveen1ORCID,Hibbard Brian R.1,Leaman Douglas W.2,Malathi Krishnamurthy1

Affiliation:

1. Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA

2. College of Sciences, Auburn University at Montgomery, 7400 East Dr., Montgomery, AL 36117, USA

Abstract

Virus infection activates integrated stress response (ISR) and stress granule (SG) formation and viruses counteract by interfering with SG assembly, suggesting an important role in antiviral defense. The infection of fish cells by Viral Hemorrhagic Septicemia Virus (VHSV), activates the innate immune recognition pathway and the production of type I interferon (IFN). However, the mechanisms by which VHSV interacts with ISR pathway regulating SG formation is poorly understood. Here, we demonstrate that fish cells respond to heat shock, oxidative stress and VHSV infection by forming SG that localized key SG marker, Ras GTPase-activating protein (SH3 domain)-binding protein 1 (G3BP1). We show that PKR-like endoplasmic reticulum kinase (PERK), but not (dsRNA)-dependent protein kinase (PKR), is required for VHSV-induced SG formation. Furthermore, in VHSV Ia infected cells, PERK activity is required for IFN production, antiviral signaling and viral replication. SG formation required active virus replication as individual VHSV Ia proteins or inactive virus did not induce SG. Cells lacking G3BP1 produced increased IFN, antiviral genes and viral mRNA, however viral protein synthesis and viral titers were reduced. We show a critical role of the activation of ISR pathway and SG formation highlighting a novel role of G3BP1 in regulating VHSV protein translation and replication.

Funder

National Institutes of Health

USDA/ARS CRIS project

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3