A Multitiered Solution for Anomaly Detection in Edge Computing for Smart Meters

Author:

Utomo DarmawanORCID,Hsiung Pao-AnnORCID

Abstract

In systems connected to smart grids, smart meters with fast and efficient responses are very helpful in detecting anomalies in realtime. However, sending data with a frequency of a minute or less is not normal with today’s technology because of the bottleneck of the communication network and storage media. Because mitigation cannot be done in realtime, we propose prediction techniques using Deep Neural Network (DNN), Support Vector Regression (SVR), and k-Nearest Neighbors (KNN). In addition to these techniques, the prediction timestep is chosen per day and wrapped in sliding windows, and clustering using Kmeans and intersection Kmeans and HDBSCAN is also evaluated. The predictive ability applied here is to predict whether anomalies in electricity usage will occur in the next few weeks. The aim is to give the user time to check their usage and from the utility side, whether it is necessary to prepare a sufficient supply. We also propose the latency reduction to counter higher latency as in the traditional centralized system by adding layer Edge Meter Data Management System (MDMS) and Cloud-MDMS as the inference and training model. Based on the experiments when running in the Raspberry Pi, the best solution is choosing DNN that has the shortest latency 1.25 ms, 159 kB persistent file size, and at 128 timesteps.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference45 articles.

1. WoodMac: Smart Meter Installations to Surge Globally Over Next 5 Yearshttps://www.greentechmedia.com/articles/read/advanced-metering-infrastructure-to-double-by-2024

2. The Promise of Edge Computing

3. Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges

4. Low carbon london project: Data from the dynamic time-of-use electricity pricing trial;Schofield;UK Data Serv. Colch. UK,2013

5. Blockchain and Deep Reinforcement Learning Empowered Intelligent 5G Beyond

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3