Fast Synchronization Scheme Using 2-Way Parallel Rendezvous in IEEE 802.15.4 TSCH

Author:

Bae Byeong-HwanORCID,Chung Sang-Hwa

Abstract

The high level of robustness and reliability required in industrial environments can be achieved using time-slotted channel hopping (TSCH) medium access control (MAC) specified in institute of electrical and electronics engineers (IEEE) 802.15.4. Using frequency channel hopping in the existing TSCH network, a parallel rendezvous technique is used to exchange packets containing channel information before network synchronization, thereby facilitating fast network synchronization. In this study, we propose a distributed radio listening (DRL)–TSCH technique that uses a two-way transmission strategy based on the parallel rendezvous technique to divide the listening channel by sharing the channel information between nodes before synchronization. The performance evaluation was conducted using the OpenWSN stack, and the actual experiment was carried out by utilizing the OpenMote-cc2538 module. The time taken for synchronization and the number of rendezvous packets transmitted were measured in linear and mesh topologies, and the amount of energy used was evaluated. The performance results demonstrate a maximum average reduction in synchronization time of 67% and a reduction in energy consumption of 58% when compared to the performance results of other techniques.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference22 articles.

1. 802.15.4e-2012-IEEE Standard for Local and metropolitan Area Networks--Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 1: MAC Sublayer

2. 802.15.4-2006- IEEE Standard for Information Technology-- Local and Metropolitan Area Networks-- Specific Requirements-- Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks (WPANs)

3. 802.15.4-2015-IEEE Standard for Low-Rate Wireless Networks

4. HART Field Communication Protocol Specification,2001

5. Wireless Systems for Industrial Automation: Process Control and Related Applications,2009

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3