Identification of Embodied Environmental Attributes of Construction in Metropolitan and Growth Region of Melbourne, Australia to Support Urban Planning

Author:

Rydlewski James,Rajabi ZohrehORCID,Tariq Muhammad Atiq Ur RehmanORCID,Muttil NitinORCID,Sidiqui Paras,Shah Ashfaq AhmadORCID,Khan Nasir AbbasORCID,Irshad Muhammad,Alam ArifORCID,Butt Tayyab Ashfaq,Ng Anne Wai ManORCID

Abstract

As growth regions evolve to accommodate the increasing population, they need to develop a wider variety of residential properties to accommodate the varying needs of the residents. As a result, the new accommodation is denser which involves higher embodied water carbon and energy. This research compares the construction differences in metropolitan and growth regions of Melbourne to identify embodied carbon, water, and energy. Representative areas of 25 km2 are selected from both regions. The growth region has 80% of the built area comprised of 2nd generation low-rise residential buildings whereas the prolific construction type in the Metropolitan region is mixed purpose industrial with 30% of the built area comprising of this type. The methodology implies open-source satellite imagery to build a spatial dataset in QGIS. The visual identification of the constructions in the study areas enables to identity the materials used in their construction. The total embodied carbon, water, and energy for the Metropolitan region are 32,895 tonnes, 4192 mL, and 3,694,412 GJ, respectively, whereas in the growth region, the totals are 179,376 tonnes carbon, 2533 mL water, and 2,243,571 GJ. Whilst Metropolitan has a significantly higher overall footprint when this is compared to the population of each region, it is shown that the growth region with its current construction type has a higher embodied carbon, water, and energy per head. The total per head for Metropolitan is 226.7 GJ energy, 257 kL water, and 20 tonnes carbon, whereas in the growth region, the embodied energy, water, and carbon, respectively, per head is 287.4 GJ, 324.6 kL, and 22 tonnes. The current performance per head of the growth region is considerably lower than that of Metropolitan. Using diverse residential construction types and efficient materials can serve the demanding needs of denser populated areas.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3