Mechanical Properties, Durability and Leaching Toxicity of Cement-Stabilized Macadam Incorporating Reclaimed Clay Bricks as Fine Aggregate

Author:

Zhang Ermao,Wang XiruiORCID,Wang WenshengORCID,Wang Haoyun

Abstract

The utilization of reclaimed clay brick (RCB) from construction and demolition (C&D) waste is an extremely troublesome problem, which is beneficial and necessary for environmental protection and resource conservation. The objective of this study is to evaluate the mechanical properties, durability and environmental impact of cement-stabilized macadam (CSM) incorporating RCB. The physical and chemical properties of RCB were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) technologies. RCB exhibited a porous surface micro-morphology, high water absorption and pozzolanic activity. The higher RCB substitution ratio resulted in a lower unconfined compressive strength of CSM. Meanwhile, the higher the RCB substitution ratio was, the larger the 90 d indirect tensile strength of CSM at the late curing period. The RCB substitution ratio within 50% was beneficial for the freeze-thaw resistance of CSM. Additionally, RCB had a smaller aggregate size, causing a negative influence on the anti-scouring property of CSM. CSM incorporating RCB had an overall increasing accumulative water loss rate, and average coefficients of dry shrinkage and temperature shrinkage, except that 20% RCB substitution ratio resulted in an excellent dry shrinkage property. Based on the chemical analysis of EDTA-2Na, the pozzolanic RCB reacted mainly at later curing to form the crystal structure, enhancing the interfacial transition zone. Additionally, the leaching solutions could meet the identification requirements for extraction toxicity, surface water and groundwater referring to Chinese standards. Utilizing RCB in road engineering as the substitute for natural aggregate would be a promising step forward to sustainable development and green construction.

Funder

Scientific and Technological Development Plan Project of Jilin Province

National Key R&D Program of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3