Monitoring and Quantitative Human Risk Assessment of Municipal Solid Waste Landfill Using Integrated Satellite–UAV–Ground Survey Approach

Author:

Zhang Shuai,Lv YunhongORCID,Yang Haiben,Han YingyueORCID,Peng Jingyu,Lan Jiwu,Zhan Liangtong,Chen Yunmin,Bate Bate

Abstract

Landfills are the dominant method of municipal solid waste (MSW) disposal in many developing countries, which are extremely susceptible to failure under circumstances of high pore water pressure and insufficient compaction. Catastrophic landfill failures have occurred worldwide, causing large numbers of fatalities. Tianziling landfill, one of the largest engineered sanitary landfills in China, has experienced massive deformation since January 2020, making early identification and monitoring of great significance for the purpose of risk management. The human risk posed by potential landfill failures also needs to be quantitatively evaluated. The interferometric synthetic aperture radar (InSAR) technique, unmanned aerial vehicle (UAV) photogrammetry, and ground measurements were combined to obtain landfill deformation data in this study. The integrated satellite–UAV–ground survey (ISUGS) approach ensures a comprehensive understanding of landfill deformation and evolution. The deformation characteristics obtained using the InSAR technique and UAV photogrammetry were analyzed and compared. A close relationship between the most severe mobility events, precipitation episodes, and was observed. Based on early hazard identification using ISUGS, a quantitative risk assessment (QRA) method and F-N curves were proposed, which can be applied to landfills. The comparison showed that ISUGS allowed a better understanding of the spatial and temporal evolution of the landfill and more accurate QRA results, which could be as references for local governments to take effective precautions.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3