From the Jordan Product to Riemannian Geometries on Classical and Quantum States

Author:

Ciaglia Florio M.ORCID,Jost JürgenORCID,Schwachhöfer LorenzORCID

Abstract

The Jordan product on the self-adjoint part of a finite-dimensional C * -algebra A is shown to give rise to Riemannian metric tensors on suitable manifolds of states on A , and the covariant derivative, the geodesics, the Riemann tensor, and the sectional curvature of all these metric tensors are explicitly computed. In particular, it is proved that the Fisher–Rao metric tensor is recovered in the Abelian case, that the Fubini–Study metric tensor is recovered when we consider pure states on the algebra B ( H ) of linear operators on a finite-dimensional Hilbert space H , and that the Bures–Helstrom metric tensors is recovered when we consider faithful states on B ( H ) . Moreover, an alternative derivation of these Riemannian metric tensors in terms of the GNS construction associated to a state is presented. In the case of pure and faithful states on B ( H ) , this alternative geometrical description clarifies the analogy between the Fubini–Study and the Bures–Helstrom metric tensor.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference74 articles.

1. Information and accuracy attainable in the estimation of statistical parameters;Rao;Bull. Calcutta Math. Soc.,1945

2. On the mathematical foundations of theoretical statistics;Fisher;Philos. Trans. R. Soc. London. Ser. A,1922

3. Information Geometry and Its Applications

4. Differential Geometry in Statistical Inference;Amari,1987

5. Methods of Information Geometry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Monotone metric tensors in quantum information geometry;International Journal of Geometric Methods in Modern Physics;2023-11-24

2. Information Geometry, Jordan Algebras, and a Coadjoint Orbit-Like Construction;Symmetry, Integrability and Geometry: Methods and Applications;2023-10-20

3. G-dual Teleparallel Connections in Information Geometry;Information Geometry;2023-08-25

4. The categorical foundations of quantum information theory: Categories and the Cramer–Rao inequality;Modern Physics Letters A;2023-06-07

5. Parametric models and information geometry on W*-algebras;Information Geometry;2023-01-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3